If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x+15=40
We move all terms to the left:
x^2+3x+15-(40)=0
We add all the numbers together, and all the variables
x^2+3x-25=0
a = 1; b = 3; c = -25;
Δ = b2-4ac
Δ = 32-4·1·(-25)
Δ = 109
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{109}}{2*1}=\frac{-3-\sqrt{109}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{109}}{2*1}=\frac{-3+\sqrt{109}}{2} $
| 6/3x=1/3+5 | | (3^x)(5^2x)=150 | | 6(2,070+w)=12,870 | | 4x=13=5 | | 2.50h*3=13 | | -4=-2(j+6)+ | | 5(2x+3)=8(x-1)+7 | | 3y-3=4y+4 | | 4(2+2x)=16 | | 3t-11=46 | | -6t^2+64+192=0 | | 12y=(-6) | | 3(3+x)=14-4x | | 82h-0.6=85 | | 5/2c=24/2 | | 4a-3(a-3)=3 | | x+16=-18 | | 82h*0.6=85 | | (X-4)+x/4=14 | | 189+2h=977 | | X/4-1=x7+6 | | 7(10+5x)=210 | | x^2-100+2304=0 | | 5/2c=24 | | -3/4m+15=12 | | 2q+392=880 | | -4n-1=2-25 | | 4x+2+4x=66 | | n-11=0 | | -22+4/5y=-22 | | 55+13x=19x | | 24+z=-14 |